Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18603, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903874

RESUMO

Industrial wastewater treatment generates sludge with high concentrations of metals and coagulants, which can cause environmental problems. This study developed a sequential sludge washing and metal recovery process for industrial sludge containing > 4500 mg/kg Cu and > 5000 mg/kg Cr. The washing agent was formulated by mixing glycolipid, lipopeptide, and phospholipid biosurfactants from Weissella cibaria PN3 and Brevibacterium casei NK8 with a chelating agent, ethylenediaminetetraacetic acid (EDTA). These biosurfactants contained various functional groups for capturing metals. The optimized formulation by the central composite design had low surface tension and contained relatively small micelles. Comparable Cu and Cr removal efficiencies of 37.8% and 38.4%, respectively, were obtained after washing the sludge by shaking with a sonication process at a 1:4 solid-to-liquid ratio. The zeta potential analysis indicated the bonding of metal ions on the surface of biosurfactant micelles. When 100 g/L iron oxide nanoparticles were applied to the washing agent without pH adjustment, 83% Cu and 100% Cr were recovered. In addition, X-ray diffraction and X-ray absorption spectroscopy of the nanoparticles showed the oxidation of nanoparticles, the reduction of Cr(V) to the less toxic Cr(III), and the absorption of Cu. The recovered metals could be further recycled, which will be beneficial for the circular economy.


Assuntos
Cromo , Metais Pesados , Cromo/química , Cobre , Esgotos/microbiologia , Micelas , Nanopartículas Magnéticas de Óxido de Ferro , Metais Pesados/análise
2.
Sci Rep ; 12(1): 16353, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175491

RESUMO

Biosurfactant-based dispersants were formulated by mixing glycolipids from Weissella cibaria PN3 and lipopeptides from Bacillus subtilis GY19 to enhance the synergistic effect and thereby achieve hydrophilic-lipophilic balance. The proportions of each biosurfactant and dispersant-to-oil ratios (DORs) were varied to obtain the appropriated formulations. The most efficient glycolipid:lipopeptide mixtures (F1 and F2) had oil displacement activities of 81-88% for fuel and crude oils. The baffled flask test of these formulations showed 77-79% dispersion effectiveness at a DOR of 1:25. To reduce the cost of the dispersant, this study optimized the glycolipid production process by using immobilized cells in a stirred tank fermenter. Semicontinuous glycolipid production was carried out conveniently for 3 cycles. Moreover, food wastes, including waste coconut water and waste frying oil, were found to promote glycolipid production. Glycolipids from the optimized process and substrates had similar characteristics but 20-50% lower cost than those produced from basal medium with soybean oil in shaking flasks. The lowest cost dispersant formulation (F2*) contained 10 g/L waste-derived cell-bound glycolipid and 10 g/L lipopeptide and showed high dispersion efficiency with various oils. Therefore, this biosurfactant-based dispersant could be produced on a larger scale for further application.


Assuntos
Lipopeptídeos , Petróleo , Bacillus subtilis , Glicolipídeos , Receptores Opioides delta , Óleo de Soja , Águas Residuárias
3.
Environ Pollut ; 285: 117378, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34051565

RESUMO

The high density and viscosity of fuel oil leads to its prolonged persistence in the environment and causes widespread contamination. Dispersants with a low environmental impact are necessary for fuel oil spill remediation. This study aimed to formulate bio-based dispersants by mixing anionic biosurfactant (lipopeptides from Bacillus subtilis GY19) with nonionic oleochemical surfactant (Dehydol LS7TH). The synergistic effect of the anionic-nonionic surfactant mixture produced a Winsor Type III microemulsion, which promoted petroleum mobilization. The hydrophilic-lipophilic deviation (HLD) equations for ionic and nonionic surfactant mixtures were compared, and it was found that the ionic equation was applicable for the calculation of lipopeptides and Dehydol LS7TH concentrations. The best formula contained 6.6% w/v lipopeptides and 11.9% w/v Dehydol LS7TH in seawater, and its dispersion effectiveness for bunker fuels A and C was 92% and 78%, respectively. The application of bio-based dispersants in water sources was optimized by Box-Behnken design. The efficiency of the bio-based dispersant was affected by the dispersant-to-oil ratios (DORs) but not by the water salinity. A suitable range of DORs for different oil contamination levels could be identified from the response surface plot. The dispersed fuel oil was further degraded by adding an oil-degrading bacterial consortium to the chemically enhanced water accommodated fractions (CEWAFs). After 7 days of incubation, the concentration of fuel oil was reduced from 3692 mg/L to 356 mg/L (88% removal efficiency). On the other hand, the abiotic control removed less than 40% fuel oil from the CEWAFs. This bio-based dispersant had an efficiency comparable to that of a commercial dispersant. The process of dispersant formulation and optimization could be applied to other surfactant mixtures.


Assuntos
Óleos Combustíveis , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Tensoativos , Poluentes Químicos da Água/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-32719789

RESUMO

Lactic acid bacteria (LABs) are generally recognized as safe (GRAS), and therefore, LAB biosurfactants are beneficial with negligible negative impacts. This study aims to maintain the biosurfactant producing activity of an LAB strain, Weissella cibaria PN3, by immobilizing the bacterial cells on a commercial porous carrier. For biosurfactant production, 2% soybean oil was used as the carbon source. After 72 h, immobilized cells were reused by replacing production medium. The extracellular and cell-bound biosurfactants were extracted from the resulting cell-free broth and cell pellets, respectively. SEM images of used immobilizing carriers showed increased surface roughness and clogged pores over time. Thus, the immobilizing carriers were washed in PBS buffer (pH 8.0) before reuse. To maintain biosurfactant production activity, immobilized cells were reactivated every three production cycles by incubating the washed immobilizing carriers in LB medium for 48 h. The maximum yields of purified extracellular (1.46 g/L) and cell-bound biosurfactants (1.99 g/L) were achieved in the 4th production cycle. The repeated biosurfactant production of nine cycles were completed within 1 month, while only 2 g of immobilized cells/L were applied. The extracellular and cell-bound biosurfactants had comparable surface tensions (31 - 33 mN/m); however, their CMC values were different (1.6 and 3.2 g/L, respectively). Both biosurfactants had moderate oil displacement efficiency with crude oil samples but formed emulsions well with gasoline, diesel, and lavender, lemongrass and coconut oils. The results suggested that the biosurfactants were relatively hydrophilic. In addition, the mixing of both biosurfactants showed a synergistic effect, as seen from the increased emulsifying activity with palm, soybean and crude oils. The biosurfactants at 10 - 16 mg/mL showed antimicrobial activity toward some bacteria and yeast but not filamentous fungi. The molecular structures of these biosurfactants were characterized by FTIR as different glycolipid congeners. The biosurfactant production process by immobilized Weissella cibaria PN3 cells was relatively cheap given that two types of biosurfactants were simultaneously produced and no new inoculum was required. The acquired glycolipid biosurfactants have high potential to be used separately or as mixed biosurfactants in various products, such as cleaning agents, food-grade emulsifiers and cosmetic products.

5.
Ecotoxicol Environ Saf ; 190: 110129, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31884327

RESUMO

Profenofos insecticide is one of the most broadly used organophosphorus pesticides causing the contamination of soil and groundwater. Since dissolved oxygen concentration in groundwater is limited, this study aimed to investigate profenofos biodegradation and detoxification under aerobic and anoxic conditions using the profenofos-degrading Pseudomonas plecoglossicida strain PF1 (PF1). Anoxic biodegradation under the presence of nitrate was the focus. The results showed that profenofos at 10-150 mg/L was degraded under aerobic and anoxic conditions with removal efficiencies of 38-55% and 27-45%, respectively. Kinetic analysis following the Michaelis-Menten model revealed that the maximum substrate degradation rates and the Michaelis constants were 13.07 and 8.92 mg/L/d and 92.07 and 84.76 mg/L under aerobic and anoxic conditions, respectively. The culture preferred an aerobic environment resulting in better biodegradation performance. During the degradation experiment, 4-bromo-2-chlorophenol and 1,1-dimethylethylphenol were detected as profenofos biodegradation intermediate products. Microbial toxicity, phytotoxicity, and cytogenotoxicity assays showed that the toxicity of the contaminated water significantly decreased after both aerobic and anoxic biodegradation by PF1. The results from this study indicated that PF1 has the potential for bioremediation in a profenofos-contaminated environment under the presence or absence of oxygen.


Assuntos
Biodegradação Ambiental , Inseticidas/metabolismo , Organotiofosfatos/metabolismo , Pseudomonas/metabolismo , Animais , Clorofenóis , Besouros/metabolismo , Água Subterrânea , Inativação Metabólica , Cinética , Nitratos , Oxigênio/metabolismo , Praguicidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...